skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schauer, Linus_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The deterioration of stream water quality threatens ecosystems and human water security worldwide. Effective risk assessment and mitigation requires spatial and temporal data from water quality monitoring networks (WQMNs). However, it remains challenging to quantify how well current WQMNs capture the spatiotemporal variability of stream water quality, making their evaluation and optimisation an important task for water management. Here, we investigate the spatial and temporal variability of concentrations of three constituents, representing different input pathways: anthropogenic (NO3), geogenic (Ca2+) and biogenic (total organic carbon, TOC) at 1215 stations in three major river basins in Germany. We present a typology to classify each constituent on the basis of magnitude, range and dominance of spatial versus temporal variability. We found that mean measures of spatial variability dominated over those for temporal variability for NO3and Ca2+, while for TOC they were approximately equal. The observed spatiotemporal patterns were robustly explained by a combination of local landscape composition and network‐scale landscape heterogeneity, as well as the degree of spatial auto‐correlation of water quality. Our analysis suggests that river network position systematically influences the inference of spatial variability more than temporal variability. By employing a space–time variance framework, this study provides a step towards optimising WQMNs to create water quality data sets that are balanced in time and space, ultimately improving the efficiency of resource allocation and maximising the value of the information obtained. 
    more » « less